40 CFR Ch. I (7-1-00 Edition)

South Nanamkin Creek	Class III
Spring Creek	Class III
Stapaloop Creek	Class III
Stepstone Creek	Class III
Stranger Creek	Class II
Strawberry Creek	Class III
Swimptkin Creek	Class III
Three Forks Creek	Class I
Three Mile Creek	Class III
Thirteen Mile Creek	Class II
Thirty Mile Creek	Class II
Trail Creek	Class III
Twentyfive Mile Creek	Class III
Twentyone Mile Creek	Class III
Twentythree Mile Creek	Class III
Wannacot Creek	Class III
Wells Creek	Class I
Whitelaw Creek	Class III
Wilmont Creek	Class II
(2) Lakes:	
Apex Lake	LC
Big Goose Lake	LC
Bourgeau Lake	LC
Buffalo Lake	LC
Cody Lake	LC
Crawfish Lakes	LC
Camille Lake	LC
Elbow Lake	LC
Fish Lake	LC
Gold Lake	LC
Great Western Lake	LC
Johnson Lake	LC

LaFleur Lake	LC
Little Goose Lake	LC
Little Owhi Lake	LC
McGinnis Lake	LC
Nicholas Lake	LC
Omak Lake	SRW
Owhi Lake	SRW
Penley Lake	SRW
Rebecca Lake	LC
Round Lake	LC
Simpson Lake	LC
Soap Lake	LC
Sugar Lake	LC
Summit Lake	LC
Twin Lakes	SRW

[54 FR 28625, July 6, 1989]

§ 131.36 Toxics criteria for those states not complying with Clean Water Act section 303(c)(2)(B).

- (a) *Scope.* This section is not a general promulgation of the section 304(a) criteria for priority toxic pollutants but is restricted to specific pollutants in specific States.
- (b)(1) EPA's Section 304(a) criteria for Priority Toxic Pollutants.

	A			3 water		C water	D Human (10 ⁻⁶ risk for	Health
	(#) Compound	CAS Number	Criterion Maximum	Criterion Continuous	Criterion Maximum	Criterion Continuous	For consur	nption of:
	(") compound	<i>-</i>	Conc. d (µg/L)	Conc. d (µg/L)	Conc. d (µg/L)	Conc. d (µg/L)	Water & Organisms (μg/L)	Organisms Only (μg/L)
			B1	B2	C1	C2	D1	D2
1	Antimony	7440360					14 a	4300 a
2	Arsenic	7440382	360 m	190 m	69 m	36 m	0.018 abc	0.14 abc
3	Beryllium	7440417					n	n
4	Cadmium	7440439	3.7 e	1.0 e	42 m	9.3 m	n	n
5a	Chromium (III)	16065831	550 e	180 e			n	n
b	Chromium (VI)	18540299	15 m	10 m	1100 m	50 m	n	n
6	Copper	7440508	17 e	11 e	2.4 m	2.4 m		
7	Lead	7439921	65 e	2.5 e	210 m	8.1 m	n	n
8 9	Mercury	7439976	2.1 m	0.012 ip	1.8 m	0.025 ip	0.14	0.15
9 10	Nickel	7440020 7782492	1400 e	160 e 5 p	74 m 290 m	8.2 m 71 m	610 a	4600 a
11	Selenium	7782492 7440224	20 p 3.4 e	- 1	1.9 m		n	n
12	Silver Thallium	7440224			1.9 111		1.7 a	6.3 a
13	Zinc	7440266	110 e	100 e	90 m	81 m	1.7 a	0.5 a
14	Cyanide	57125	22	5.2	1	1	700 a	220000 aj
15	Asbestos	1332214		0.2	·	·	7.000.000	220000 aj
10	710000103	1002214					fibers/L k	•••••
16	2,3,7,8-TCDD (Dioxin)	1746016	l				0.000000013 c	0.000000014 c
17	Acrolein	107028					320	780
18	Acrylonitrile	107131					0.059 ac	0.66 ac
19	Benzene	71432					1.2 ac	71 ac
20	Bromoform	75252					4.3 ac	360 ac
21	Carbon Tetrachloride	56235					0.25 ac	4.4 ac
22	Chlorobenzene	108907					680 a	21000 aj
23	Chlorodibromomethane	124481					0.41 ac	34 ac
24	Chloroethane	75003						
25	2-Chloroethylvinyl Ether	110758						
26	Chloroform	67663					5.7 ac	470 ac
27	Dichlorobromomethane	75274					0.27 ac	22 ac
28	1,1-Dichloroethane	75343						
29	1,2-Dichloroethane	107062					0.38 ac	99 ac
30	1,1-Dichloroethylene	75354					0.057 ac	3.2 ac
31	1,2-Dichloropropane	78875						
32	1,3-Dichloropropylene	542756	l	l	l	l l	10 a	1700 a

	A		E Fresh		Saltv		D Human H	
	(#) Compound	CAS Number	Criterion Maximum	Criterion Continuous	Criterion Maximum	Criterion Continuous	(10 ⁻⁶ risk for o	ption of:
	(#) Compound	CAS Number	Conc. d (µg/L)	Continuous Conc. d (µg/L)	Conc. d (µg/L)	Continuous Conc. d (µg/L)	Water & Organisms (μg/L)	Organisms Only (μg/L)
			B1	B2	C1	C2	D1	D2
33	Ethylbenzene	100414					3100 a	29000 a
34	Methyl Bromide	74839					48 a	4000 a
35	Methyl Chloride	74873					n	r.
36	Methylene Chloride	75092					4.7 ac	1600 ac
37	1,1,2,2-	.0002					40	.000 00
	trachloroethane	79345					0.17 ac	11 ac
38	Tetrachloroethylene	127184					0.8 c	8.85 0
39	Toluene	108883					6800 a	200000 a
40	1,2-Trans-Dichloro-	100000					0000 a	200000 0
	ylene	156605						
41	1,1,1-Trichloroethane	71556					n	r
42	1,1,2-Trichloroethane	79005					0.60 ac	42 ac
43	Trichloroethylene	79016					2.7 c	81 0
44	Vinyl Chloride	75014					2 c	525 0
45	2-Chlorophenol	95578					20	020 0
46	2,4-Dichlorophenol	120832					93 a	790 a
47	2,4-Dimethylphenol	105679					00 4	700 4
48	2-Methyl-4,6-	100073						
	nitrophenol	534521					13.4	765
49	2,4-Dinitrophenol	51285					70 a	14000 a
50	2-Nitrophenol	88755					70 4	14000 6
51	4-Nitrophenol	100027						
52	3-Methyl-4-Chlorophenol	59507						
53	Pentachlorophenol	87865	20 f	13 f	13	7.9	0.28 ac	8.2 ac
54	Phenol	108952	201	101	10	'.5	21000 a	4600000 a
55	2,4,6-Trichlorophenol	88062					2.1 ac	6.5 ac
56	Acenaphthene	83329					2.1 40	0.5 ac
57	Acenaphthylene	208968						
58	Anthracene	120127					9600 a	110000 a
59	Benzidine	92875					0.00012 ac	0.00054 ad
60	Benzo(a)Anthracene	56553					0.00012 ac	0.00034 ac
61	Benzo(a)Pyrene	50328					0.0028 c	0.031 0
62	Benzo(b)Fluoranthene	205992					0.0028 c	0.031 0

63	Benzo(ghi)Perylene	191242					
64	Benzo(k)Fluoranthene	207089				0.0028 c	0.031 c
65	Bis(2-Chloro-						
etho	oxy)Methane	111911	 				
66	Bis(2-Chloroethyl)Ether	111444	 			0.031 ac	1.4 ac
67	Bis(2-Chloroiso-						
proi	oyl)Ether	108601				1400 a	170000 a
68	Bis(2-Ethyl-					1.00 a	
	yl)Phthalate	117817				1.8 ac	5.9 ac
69	4-Bromophenyl Phenyl	117017	 			1.0 40	0.0 40
	er	101553					
70	Butylbenzyl Phthalate	85687					
71	2-Chloronaphthalene	91587					
72	4-Chlorophenyl Phenyl	31307	 				
	er	7005723					
73	Chrysene	218019				0.0028 c	0.031 c
74	Dibenzo(ah)Anthracene	53703	 			0.0028 c	0.031 c
75	1,2-Dichlorobenzene	95501				2700 a	17000 a
76	1,3-Dichlorobenzene	541731	 			400 a	2600
77	1,4-Dichlorobenzene	106467	 			400	2600
78	3,3'-Dichlorobenzidine	91941	 			0.04 ac	0.077 ac
76 79		84662	 				
	Diethyl Phthalate		 			23000 a	120000 a
80	Dimethyl Phthalate	131113	 			313000	2900000
81	Di-n-Butyl Phthalate	84742	 			2700 a	12000 a
82	2,4-Dinitrotoluene	121142	 			0.11 c	9.1 c
83	2,6-Dinitrotoluene	606202	 				
84	Di-n-Octyl Phthalate	117840	 				
85	1,2-Diphenylhydrazine	122667	 			0.040 ac	0.54 ac
86	Fluoranthene	206440	 			300 a	370 a
87	Fluorene	86737	 			1300 a	14000 a
88	Hexachlorobenzene	118741	 			0.00075 ac	0.00077 ac
89	Hexachlorobutadiene	87683	 			0.44 ac	50 ac
90	Hexachlorocyclopenta-						
dier	ne	77474	 			240 a	17000 aj
91	Hexachloroethane	67721	 			1.9 ac	8.9 ac
92	Indeno(1,2,3-cd)Pyrene	193395	 			0.0028 c	0.031 c
93	Isophorone	78591	 			8.4 ac	600 ac
94	Naphthalene	91203	 				
95	Nitrobenzene	98953	 			17 a	1900 aj
96	N-Nitrosodimethylamine	62759	 			0.00069 ac	8.1 ac
97	N-Nitrosodi-n-Propyl-						
ami	ne	621647	 				
98	N-Nitrosodiphenylamine	86306	 			5.0 ac	16 ac
99	Phenanthrene	85018	 				

	A		E Fresh	•	Saltv		D Human Health (10 ⁻⁶ risk for carcinogens)	
	(#) Compound	CAS Number	Criterion Maximum Conc. ^d (µg/L)	Criterion Continuous Conc. $^{\rm d}$ $_{(\mu g^{/\rm L})}$	Criterion Maximum Conc. $^{ m d}$ $_{(\mu { m g/L})}^{ m L}$	Criterion Continuous Conc. d (µg/L)	For consun Water & Organisms	option of: Organisms Only
			B1	B2	C1	C2	(μg/L) D1	(μg/L) D2
100	Pyrene	129000					960 a	11000 a
101	1,2,4-Trichlorobenzene	120821					000 4	
102	Aldrin	309002	3 a		1.3 a		0.00013 ac	0.00014 ad
103	alpha-BHC	319846	~ 9		9		0.0039 ac	0.013 a
104	beta-BHC	319857					0.014 ac	0.046 ad
105	gamma-BHC	58899	2 g	0.08 a	0.16 g		0.019 c	0.063
106	delta-BHC	319868						
107	Chlordane	57749	2.4 q	0.0043 g	0.09 g	0.004 q	0.00057 ac	0.00059 ad
108	4,4'-DDT	50293	1.1 a	0.001 g	0.13 g	0.001 g	0.00059 ac	0.00059 a
109	4.4'-DDE	72559					0.00059 ac	0.00059 ad
110	4.4'-DDD	72548					0.00083 ac	0.00084 ad
111	Dieldrin	60571	2.5 q	0.0019 q	0.71 g	0.0019 q	0.00014 ac	0.00014 ad
112	alpha-Endosulfan	959988	0.22 g	0.056 g	0.034 g	0.0087 g	0.93 a	2.0 a
113	beta-Endosulfan	33213659	0.22 g	0.056 g	0.034 g	0.0087 g	0.93 a	2.0 a
114	Endosulfan Sulfate	1031078					0.93 a	2.0 a
115	Endrin	72208	0.18 g	0.0023 g	0.037 g	0.0023 g	0.76 a	0.81 a
116	Endrin Aldehyde	7421934					0.76 a	0.81 a
117	Heptachlor	76448	0.52 g	0.0038 g	0.053 g	0.0036 g	0.00021 ac	0.00021 ad
118	Heptachlor Epoxide	1024573	0.52 g	0.0038 g	0.053 g	0.0036 g	0.00010 ac	0.00011 ad
119	PCB-1242	53469219		0.014 g		0.03 g		
120	PCB-1254	11097691		0.014 g		0.03 g		
121	PCB-1221	11104282		0.014 g		0.03 g		
122	PCB-1232	11141165		0.014 g		0.03 g		
123	PCB-1248	12672296		0.014 g		0.03 g		
124	PCB-1260	11096825		0.014 g		0.03 g		
125a	PCB-1016	12674112		0.014 g		0.03 g		
125b	Polychlorinated							
biph	nenyls							
	(PCBs)						0.00017 q	0.00017
126	Toxaphene	8001352	0.73	0.0002	0.21	0.0002	0.00073 ac	0.00075 ad
Т	otal Number of Criteria (h)							
	=		24	29	23	27	85	84

FOOTNOTES

- a. Criteria revised to reflect current agency q₁* or RfD, as contained in the Integrated Risk Information System (IRIS). The fish tissue bioconcentration factor (BCF) from the 1980 criteria documents was retained in all cases.
- b. The criteria refers to the inorganic form only.

c. Criteria in the matrix based on carcinogenicity (10-6 risk). For a risk level of 10-5, move the decimal point in the matrix value one place to the right.

d. Criteria Maximum Concentration (CMC) = the highest concentration of a pollutant to which aquatic life can be exposed for a short period of time (1-hour average) without deleterious effects. Criteria Continuous Concentration (CCC) = the highest concentration of a pollutant to which aquatic life can be exposed for an extended period of time (4 days) without deleterious effects. µg/L

micrograms per liter.

- e. Freshwater aquatic life criteria for these metals are expressed as a function of total hardness (mg/L as CaCO₃), the pollutant's water effect ratio (WER) as defined in \$131.36(c) and multiplied by an appropriate dissolved conversion factor as defined in §131.36(b)(2). For comparative purposes, the values displayed in this matrix are shown as dissolved metal and correspond to a total hardness of 100 mg/L and a water effect ratio of 1.0.
- f. Freshwater aquatic life criteria for pentachlorophenol are expressed as a function of pH, and are calculated as follows. Values displayed above in the matrix correspond to a pH of 7.8.

$$CMC = exp(1.005(pH) - 4.830)$$

 $CCC = exp(1.005(pH) - 5.290)$

- g. Aquatic life criteria for these compounds were issued in 1980 utilizing the 1980 Guidelines for criteria development. The acute values shown are final acute values (FAV) which by the 1980 Guidelines are instantaneous values as contrasted with a CMC which is a one-hour average.
- h. These totals simply sum the criteria in each column. For aquatic life, there are 31 priority toxic pollutants with some type of freshwater or saltwater, acute or chronic criteria. For human health, there are 85 priority toxic pollutants with either "water + fish" or "fish only" criteria. Note that these totals count chromium as one pollutant even though EPA has developed criteria based on two valence states. In the matrix, EPA has assigned numbers 5a and 5b to the criteria for chromium to reflect the fact that the list of 126 priority toxic pollutants includes only a single listing for chromium.

 i. If the CCC for total mercury exceeds
- 0.012 μg/l more than once in a 3-year period in the ambient water, the edible portion of aquatic species of concern must be analyzed

to determine whether the concentration of methyl mercury exceeds the FDA action level (1.0 mg/kg). If the FDA action level is exceeded, the State must notify the appropriate EPA Regional Administrator, initiate a revision of its mercury criterion in its water quality standards so as to protect designated uses, and take other appropriate action such as issuance of a fish consumption advisory for the affected area.

j. No criteria for protection of human health from consumption of aquatic organisms (excluding water) was presented in the 1980 criteria document or in the 1986 Quality Criteria for Water. Nevertheless, sufficient information was presented in the 1980 document to allow a calculation of a criterion, even though the results of such a calculation were not shown in the document.

k. The criterion for asbestos is the MCL (56 FR 3526, January 30, 1991).

1. [Reserved: This letter not used as a footnote.1

m. Criteria for these metals are expressed as a function of the water effect ratio, WER, as defined in 40 CFR 131.36(c).

> CMC = column B1 or C1 value × WER CCC = column B2 or C2 value × WER

- n. EPA is not promulgating human health criteria for this contaminant. However, permit authorities should address this contaminant in NPDES permit actions using the State's existing narrative criteria for toxics.
- o. [Reserved: This letter not used as a footnote.1
- p. Ćriterion expressed as total recoverable.
- q. This criterion applies to total PCBs (e.g., the sum of all congener or isomer or homolog or Aroclor analyses).

GENERAL NOTES

- 1. This chart lists all of EPA's priority toxic pollutants whether or not criteria recommendations are available. Blank spaces indicate the absence of criteria recommendations. Because of variations in chemical nomenclature systems, this listing of toxic pollutants does not duplicate the listing in Appendix A of 40 CFR Part 423. EPA has added the Chemical Abstracts Service (CAS) registry numbers, which provide a unique identification for each chemical.
- following chemicals The organoleptic based criteria recommendations that are not included on this chart (for reasons which are discussed in the preamble): copper, zinc, chlorobenzene, 2-chlorophenol, acenaphthene, 2,4-dichlorophenol, dimethylphenol, 3-methyl-4-chlorophenol, hexachlorocyclopentadiene,

pentachlorophenol, phenol.

3. For purposes of this rulemaking, freshwater criteria and saltwater criteria apply as specified in 40 CFR 131.36(c).

NOTE TO PARAGRAPH (B)(1): On April 14, 1995, the Environmental Protection Agency issued

a stay of certain criteria in paragraph (b)(1) of this section as follows: the criteria in columns B and C for arsenic, cadmium, chromium (VI), copper, lead, nickel, silver, and zinc; the criteria in B1 and C1 for mercury; the criteria in column B for chromium (III): and the criteria in column C for selenium. The stay remains in effect until further no-

(2) Factors for Calculating Hardness-Dependent, Freshwater Metals Criteria CMC=WER exp { $m_A[ln(hardness)]+b_A$ } x Acute Conversion Factor CCC=WER exp { $m_C[ln(hardness)]+b_C$ } x Chronic Conversion Factor Final CMC and CCC values should be rounded to two significant figures.

Metal	m _A b _A	m _C	b _C	Freshwater conversion factors		
					Acute	Chronic
Cadmium	1.128	-3.828	0.7852	-3.490	a 0.944	a 0.909
Chromium (III)	0.8190	3.688	0.8190	1.561	0.316	0.860
Copper	0.9422	-1.464	0.8545	-1.465	0.960	0.960
Lead	1.273	-1.460	1.273	-4.705	a 0.791	a 0.791
Nickel	0.8460	3.3612	0.8460	1.1645	0.998	0.997
Silver	1.72	-6.52	ь N/A	ь N/A	0.85	ь N/A
Zinc	0.8473	0.8604	0.8473	0.7614	0.978	0.986

Note to table: The term "exp" represents the base e exponential function.

The freshwater conversion factors (CF) for cadmium and lead are hardness-dependent and can be calculated for any hardness [see limitations in § 131.36(c)(4)] using the following equations:

Cadmium

Cachimin Acute: CF=1.136672—[(In hardness)(0.041838)] Chronic: CF=1.101672—[(In hardness)(0.041838)] Lead (Acute and Chronic): CF = 1.46203—[(In hardness)(0.145712)]

^b No chronic criteria are available for silver.

- (c) Applicability. (1) The criteria in paragraph (b) of this section apply to the States' designated uses cited in paragraph (d) of this section and supersede any criteria adopted by the State, except when State regulations contain criteria which are more stringent for a particular use in which case the State's criteria will continue to apply.
- (2) The criteria established in this section are subject to the State's general rules of applicability in the same way and to the same extent as are the other numeric toxics criteria when applied to the same use classifications including mixing zones, and low flow values below which numeric standards can be exceeded in flowing fresh waters.
- (i) For all waters with mixing zone regulations or implementation procedures, the criteria apply at the appropriate locations within or at the boundary of the mixing zones; otherwise the criteria apply throughout the waterbody including at the end of any discharge pipe, canal or other discharge point.
- (ii) A State shall not use a low flow value below which numeric standards can be exceeded that is less stringent than the following for waters suitable for the establishment of low flow re-

turn frequencies (i.e., streams and riv-

AQUATIC LIFE

Acute criteria (CMC) 1 Q 10 or 1 B 3 7 Q 10 or 4 B 3 Chronic criteria

(CCC)

HUMAN HEALTH

Non-carcinogens 30 Q 5

Carcinogens Harmonic mean flow

- CMC-criteria maximum concentration-the water quality criteria to protect against acute effects in aquatic life and is the highest instream concentration of a priority toxic pollutant consisting of a onehour average not to be exceeded more than once every three years on the average;
- CCC—criteria continuous concentration—the water quality criteria to protect against chronic effects in aquatic life is the highest instream concentration of a priority toxic pollutant consisting of a 4-day average not to be exceeded more than once every three years on the average;
- 1 Q 10 is the lowest one day flow with an average recurrence frequency of once in 10 years determined hydrologically;
- 1 B 3 is biologically based and indicates an allowable exceedence of once every 3 years. It is determined by EPA's computerized method (DFLOW model):
- $7~\mathrm{Q}~10~\mathrm{is}$ the lowest average $7~\mathrm{consecutive}$ day low flow with an average recurrence frequency of once in 10 years determined hydrologically;

- 4 B 3 is biologically based and indicates an allowable exceedence for 4 consecutive days once every 3 years. It is determined by EPA's computerized method (DFLOW model):
- 30 Q 5 is the lowest average 30 consecutive day low flow with an average recurrence frequency of once in 5 years determined hydrologically; and the harmonic mean flow is a long term mean flow value calculated by dividing the number of daily flows analyzed by the sum of the reciprocals of those daily flows.
- (iii) If a State does not have such a low flow value for numeric standards compliance, then none shall apply and the criteria included in paragraph (d) of this section herein apply at all flows
- (3) The aquatic life criteria in the matrix in paragraph (b) of this section apply as follows:
- (i) For waters in which the salinity is equal to or less than 1 part per thousand 95% or more of the time, the applicable criteria are the freshwater criteria in Column B;
- (ii) For waters in which the salinity is equal to or greater than 10 parts per thousand 95% or more of the time, the applicable criteria are the saltwater criteria in Column C; and
- (iii) For waters in which the salinity is between 1 and 10 parts per thousand as defined in paragraphs (c)(3) (i) and (ii) of this section, the applicable criteria are the more stringent of the freshwater or saltwater criteria. However, the Regional Administrator may approve the use of the alternative freshwater or saltwater criteria if scientifically defensible information and data demonstrate that on a site-specific basis the biology of the waterbody is dominated by freshwater aquatic life and that freshwater criteria are more appropriate; or conversely, the biology of the waterbody is dominated by saltwater aquatic life and that saltwater criteria are more appropriate.
- (4) Application of metals criteria. (i) For purposes of calculating freshwater aquatic life criteria for metals from the equations in paragraph (b)(2) of this section, the minimum hardness allowed for use in those equations shall not be less than 25 mg/l, as calcium carbonate, even if the actual ambient hardness is less than 25 mg/l as calcium carbonate. The maximum hardness

- value for use in those equations shall not exceed 400 mg/l as calcium carbonate, even if the actual ambient hardness is greater than 400 mg/l as calcium carbonate. The same provisions apply for calculating the metals criteria for the comparisons provided for in paragraph (c)(3)(iii) of this section.
- (ii) The hardness values used shall be consistent with the design discharge conditions established in paragraph (c)(2) of this section for flows and mixing zones.
- (iii) Except where otherwise noted, the criteria for metals (compounds #2, #4-# 11, and #13, in paragraph (b) of this section) are expressed as dissolved metal. For purposes of calculating aquatic life criteria for metals from the equations in footnote m. in the criteria matrix in paragraph (b)(1) of this section and the equations in paragraphs (b)(2) of this section, the watereffect ratio is computed as a specific pollutant's acute or chronic toxicity values measured in water from the site covered by the standard, divided by the respective acute or chronic toxicity value in laboratory dilution water.
- (d) Criteria for Specific Jurisdictions—(1) Rhode Island, EPA Region 1. (i) All waters assigned to the following use classifications in the Water Quality Regulations for Water Pollution Control adopted under Chapters 46–12, 42–17.1, and 42–35 of the General Laws of Rhode Island are subject to the criteria in paragraph (d)(1)(ii) of this section, without exception:

6.21 Freshwater	6.22 Saltwater:
Class A	Class SA
Class B	Class SB
Class C	Class SC

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classifications identified in paragraph (d)(1)(i) of this section:

Use classification	Applicable criteria
Class A	These classifications are assigned the criteria in Column D1—#2, 68

Use classification	Applicable criteria
Class B waters where water supply use is not des- ignated. Class C; Class SA; Class SB; Class SC	Each of these classifications is assigned the criteria in: Column D2—#2, 68

- (iii) The human health criteria shall be applied at the 10⁻⁵ risk level, consistent with the State policy. To determine appropriate value for carcinogens, see footnote c in the criteria matrix in paragraph (b)(1) of this section.
- (2) Vermont, EPA Region 1. (i) All waters assigned to the following use classifications in the Vermont Water Quality Standards adopted under the authority of the Vermont Water Pollution Control Act (10 V.S.A., Chapter 47) are subject to the criteria in paragraph (d)(2)(ii) of this section, without exception:

Class A Class B Class C

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classifications identified in paragraph (d)(2)(i) of this section:

Use classification	Applicable criteria
Class A	This classification is assigned criteria in: Column B2—#105 These classifications are assigned all the criteria in: Column B2—#105 Column D2—#2

- (iii) The human health criteria shall be applied at the State-proposed 10^{-6} risk level.
- (3) New Jersey, EPA Region 2. (i) All waters assigned to the following use classifications in the New Jersey Administrative Code (N.J.A.C.) 7:9-4.1 et seq., Surface Water Quality Standards, are subject to the criteria in paragraph (d)(3)(ii) of this section, without exception.

N.J.A.C. 7:9-4.12(b): Class PL N.J.A.C. 7:9-4.12(c): Class FW2 N.J.A.C. 7:9-4.12(d): Class SE1 N.J.A.C. 7:9-4.12(e): Class SE2 N.J.A.C. 7:9-4.12(f): Class SE3 N.J.A.C. 7:9-4.12(g): Class SC N.J.A.C. 7:9-4.13(a): Delaware River Zones 1C, 1D, and 1E N.J.A.C. 7:9-4.13(b): Delaware River Zone 2 N.J.A.C. 7:9-4.13(c): Delaware River Zone 3 N.J.A.C. 7:9-4.13(d): Delaware River Zone 4 N.J.A.C. 7:9-4.13(e): Delaware River Zone 5 N.J.A.C. 7:9-4.13(f): Delaware River Zone 6

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classifications identified in paragraph (d)(3)(i) of this section:

Use classification

Applicable criteria

PL (Freshwater Pinelands), FW2 These classifications are assigned the criteria in: Column BI—all except #102, 105, 107, 108, 111, 112, 113, 115, 117, and 118.

Column B2—all except #105, 107, 108, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, and 125a.

Column D1—all at a 10⁻⁶ risk level except #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105; #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105, at a 10⁻⁵ risk level.

Column D2—all at a 10⁻⁶ risk level except #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105; #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105, at a 10⁻⁵ risk level.

PL (Saline Water Pinelands), SE1, SE2, SE3, SC

Delaware River

2. 3. 4. 5 and

zone 6

Delaware Bay

zones 1C, 1D, 1E,

These classifications are each assigned the criteria in:

Column C1—all except #102, 105, 107, 108, 111, 112, 113, 115, 117, and 118.

Column C2—all except #105, 107, 108, 111, 112, 113, 115, 117, 118, 119, 120, 121, 122, 123, 124, and 125a.

Column D2—all at a 10⁻⁶ risk level except #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105; #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105, at a 10⁻⁵ risk level.

These classifications are each assigned the criteria in:

Column B1—all. Column B2—all.

Use classification Applicable criteria Column D1-all at a 10⁻⁶ risk level except #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105; #23, 30, 37, 38 42 68 89 91 93, 104, 105, at a 10^{−5} risk level. Column D2-all at a 10-6 risk level except #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105; #23, 30, 37, 38, 42, 68, 89, 91, 93, 104, 105, at a 10⁻⁵ risk level. Delaware River These classifications zones 3, 4, and 5, are each assigned the and Delaware criteria in: Bay zone 6 Column C1—all Column C2-all. Column D2—all at a 10⁻⁶ risk level except #23, 30, 37, 38, 42, 68, 89, 91, 93, 104. 105: #23. 30. 37. 38, 42, 68, 89, 91,

(iii) The human health criteria shall be applied at the State-proposed 10^{-6} risk level for EPA rated Class A, B₁, and B₂ carcinogens; EPA rated Class C carcinogens shall be applied at 10^{-5} risk level. To determine appropriate value for carcinogens, see footnote c. in the matrix in paragraph (b)(1) of this section.

93, 104, 105, at a

 10^{-5} risk level.

(4) Puerto Rico, EPA Region 2. (i) All waters assigned to the following use classifications in the Puerto Rico Water Quality Standards (promulgated by Resolution Number R-83-5-2) are subject to the criteria in paragraph (d)(4)(ii) of this section, without exception.

Article 2.2.2—Class SB Article 2.2.3—Class SC Article 2.2.4—Class SD

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classifications identified in paragraph (d)(4)(i) of this section:

Use classification Applicable criteria

Class SD This Classification is assigned criteria in:

Use classification Applicable criteria

Column B1-all, except: 10, 102, 105, 107, 108, 111, 112, 113, 115, 117, and 126. Column B2-all. except: 105, 107, 108, 112, 113, 115, and Column D1-all, except: 6, 14, 105, 112, 113, and 115. Column D2-all. except: 14, 105, 112, 113, and 115. These Classifications are assigned criteria in: Column C1-all, ex-

Class SB, Class SC

cept: 4, 5b, 7, 8, 10, 11, 13, 102, 105, 107, 108, 111, 112, 113, 115, 117, and 126. Column C2—all, except: 4, 5b, 10, 13, 108, 112, 113, 115, and 117. Column D2—all, except: 14, 105, 112, 113, and 115.

(iii) The human health criteria shall be applied at the State-proposed 10^{-5} risk level. To determine appropriate value for carcinogens, see footnote c, in the criteria matrix in paragraph (b)(1) of this section.

(5) District of Columbia, EPA Region 3.

(i) All waters assigned to the following use classifications in chapter 11 Title 21 DCMR, Water Quality Standards of the District of Columbia are subject to the criteria in paragraph (d)(5)(ii) of this section, without exception:

1101.2 Class C waters

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classification identified in paragraph (d)(5)(i) of this section:

Use classification	Applicable criteria
Class C	This classification is assigned the additional criteria in: Column B2—#10, 118, 126 Column D1—#15, 16, 44, 67, 68, 79, 80, 81, 88, 114, 116, 118.

- (iii) The human health criteria shall be applied at the State-adopted 10^{-6} risk level.
 - (6) Florida, EPA Region 4.
- (i) All waters assigned to the following use classifications in Chapter 17–301 of the Florida Administrative Code (i.e., identified in Section 17–302.600) are subject to the criteria in paragraph (d)(6)(ii) of this section, without exception:

Class I Class II Class III

(ii) The following criteria from the matrix paragraph (b)(1) of this section apply to the use classifications identified in paragraph (d)(6)(i) of this section:

Use classification Applicable criteria Class I This classification is assigned the criteria in: Column D1—#16 Class II This classification is Class III (marine) assigned the criteria in: Column D2-#16 Class III (freshwater) This classification is assigned the criteria in: Column D2-#16

- (iii) The human health criteria shall be applied at the State-adopted 10^{-6} risk level.
 - (7) Michigan, EPA Region 5.
- (i) All waters assigned to the following use classifications in the Michigan Department of Natural Resources Commission General Rules, R 323.1100 designated uses, as defined at R 323.1043. Definitions; A to N, (i.e., identified in Section (g) "Designated use") are subject to the criteria in paragraph (d)(7)(ii) of this section, without exception:

Agriculture
Navigation
Industrial Water Supply
Public Water Supply at the Point of Water
Intake
Warmwater Fish
Other Indigenous Aquatic Life and Wildlife
Partial Body Contact Recreation

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classifications

identified in paragraph (d)(7)(i) of this section:

Use classification Applicable criteria Public Water sup-This classification is ply assigned the criteria in: Column B1-all, Column B2-all. Column D1—all These classifications All other designaare assigned the critions teria in: Column B1-all, Column B2—all, and Column D2-all.

- (iii) The human health criteria shall be applied at the State-adopted 10-5 risk level. To determine appropriate value for carcinogens, see footnote c in the criteria matrix in paragraph (b)(1) of this section.
 - (8) Arkansas, EPA Region 6.
- (i) All waters assigned to the following use classification in section 4C (Waterbody uses) identified in Arkansas Department of Pollution Control and Ecology's Regulation No. 2 as amended and entitled, "Regulation Establishing Water Quality Standards for Surface Waters of the State of Arkansas" are subject to the criteria in paragraph (d)(8)(ii) of this section, without exception:

Extraordinary Resource Waters Ecologically Sensitive Waterbody Natural and Scenic Waterways Fisheries:

- (1) Trout
- (2) Lakes and Reservoirs
- (3) Streams
 - (a) Ozark Highlands Ecoregion
 - (b) Boston Mountains Ecoregion
 - (c) Arkansas River Valley Ecoregion
 - (d) Ouachita Mountains Ecoregion
 - (e) Typical Gulf Coastal Ecoregion (f) Spring Water-influenced Gulf Coastal
 - (g) Least-altered Delta Ecoregion
- (h) Channel-altered Delta Ecoregion

Domestic Water Supply

Ecoregion

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classification identified in paragraph (d)(8)(i) of this section:

Use classification	Applicable criteria			
Extraordinary Re-				
source Waters				
Ecologically Sensitive				
Waterbody				
Natural and Scenic Wa-				
terways				
Fisheries:				
(1) Trout				
(2) Lakes and Res-				
ervoirs				
(3) Streams				
(a) Ozark Highlands				
Ecoregion				
(b) Boston Moun-				
tains Ecoregion				
(c) Arkansas River				
Valley Ecoregion				
(d) Ouachita Moun-				
tains Ecoregion				
(e) Typical Gulf				
Coastal				
Ecoregion				
(f) Spring Water-in-				
fluenced Gulf				
Coastal				
Ecoregion				
(g) Least-altered				
Delta Ecoregion				
(h) Channel-altered	These uses are			
Delta Ecoregion	each assigned the			
	criteria in—			
	Column B1—#4,			
	5a, 5b, 6, 7, 8,			
	9, 10, 11, 13, 14			

(9) Kansas, EPA Region 7.

(i) All waters assigned to the following use classification in the Kansas Department of Health and Environment regulations, K.A.R. 28–16–28b through K.A.R. 28–16–28f, are subject to the criteria in paragraph (d)(9)(ii) of this section, without exception.

Column B2-#4.

9, 10, 13, 14

5a, 5b, 6, 7, 8,

Section (2)(A)—Special Aquatic Life Use Waters

Section (2)(B)—Expected Aquatic Life Use Waters

Section (2)(C)—Restricted Aquatic Life Use Waters

Section (3)—Domestic Water Supply. Section (4)—Food Procurement Use.

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classifications identified in paragraph (d)(9)(i) of this section:

Use classification	Applicable criteria		
Sections (2)(A), (2)(B), (2)(C), (4).	These classifications are each assigned criteria as follows: Column B1, #2, 4 Column B2, #4 Column D2, #2, 12, 21, 29, 39, 46, 68, 79, 81, 86, 93, 104, 114, 118		
Section (3)	This classification is assigned all criteria in: Column D1, all except #1, 9, 12, 14, 15, 17, 22, 33, 36, 39, 44, 75, 77, 79, 90, 112, 113, and 115.		

(iii) The human health criteria shall be applied at the State-adopted 10^{-6} risk level.

(10) California, EPA Region 9.

(i) All waters assigned any aquatic life or human health use classifications in the Water Quality Control Plans for the various Basins of the State ("Basin Plans''), as amended, adopted by the California State Water Resources Control Board ("SWRCB"), except for ocean waters covered by the Water Quality Control Plan for Ocean Waters of California ("Ocean Plan") adopted by the SWRCB with resolution Number 90-27 on March 22, 1990, are subject to the criteria in paragraph (d)(10)(ii) of this section, without exception. These criteria amend the portions of the existing State standards contained in the Basin Plans. More particularly these criteria amend water quality criteria contained in the Basin Plan Chapters specifying water quality objectives (the State equivalent of federal water quality criteria) for the toxic pollutants identified in paragraph (d)(10)(ii) of this section. Although the State has adopted several use designations for each of these waters, for purposes of this action, the specific standards to be applied in paragraph (d)(10)(ii) of this section are based on the presence in all waters of some aquatic life designation and the presence or absence of the MUN use designation (Municipal and domestic supply). (See Basin Plans for more detailed use definitions.)

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the water and use classifications defined in paragraph (d)(10)(i) of this section and identified below:

Water and use classification	Applicable criteria
Waters of the State defined as bays or estuaries except the Sacramento-San Joaquin Delta and San Francisco Bay	These waters are assigned the criteria in: Column B1—pollutants 5a and 14 Column B2—pollutants 5a and 14 Column C1—pollutant 14 Column C2—pollutant 14 Column D2—pollutants 1, 12, 17, 18, 21, 22, 29, 30, 32, 33, 37, 38, 42–44, 46, 48, 49, 54, 59, 66, 67, 68, 78–82, 85, 89, 90, 91, 93, 95, 96, 98
Waters of the Sacramento—San Joaquin Delta and waters of the State defined as inland (i.e., all surface waters of the State not bays or estuaries or ocean) that include a MUN use designation	These waters are assigned the criteria in: Column B1—pollutants 5a and 14 Column B2—pollutants 5a and 14 Column D1—pollutants 1, 12, 15, 17, 18, 21, 22, 29, 30, 32, 33, 37, 38, 42–48, 49, 59, 66, 67, 68, 78–82, 85, 89, 90, 91, 93, 95, 96, 98
Waters of the State defined as inland without an MUN use designation	These waters are assigned the criteria in: Column B1—pollutants 5a and 14 Column B2—pollutants 5a and 14 Column D2—pollutants 1, 12, 17, 18, 21, 22, 29, 30, 32, 33, 37, 38, 42–44, 46, 48, 49, 54, 59, 66, 67, 68, 78–82, 85, 89, 90, 91, 93, 95, 96, 98
Waters of the San Joaquin River from the mouth of the Merced River to Vernalis	In addition to the criteria assigned to these waters elsewhere in this rule, these waters are assigned the criteria in: Column B2—pollutant 10
Waters of Salt Slough, Mud Slough (north) and the San Joaquin River, Sack Dam to the mouth of the Merced River	In addition to the criteria assigned to these waters elsewhere in this rule, these waters are assigned the criteria in: Column B1—pollutant 10 Column B2—pollutant 10
Waters of San Francisco Bay upstream to and including Suisun Bay and the Sacramento-San Joaquin Delta	These waters are assigned the criteria in: Column B1—pollutants 5a, 10* and 14 Column B2—pollutants 5a, 10* and 14 Column C1—pollutant 14 Column C2—pollutant 14 Column D2—pollutants 1, 12, 17, 18, 21, 22, 29, 30, 32, 33, 37, 38, 42–44, 46, 48, 49, 54, 59, 66, 67, 68, 78–82, 85, 89, 90, 91, 93, 95, 96, 98

Water and use classification

All inland waters of the United States or enclosed bays and estuaries that are waters of the United States that include an MUN use designation and that the State has either excluded or partially excluded from coverage under its Water Quality Control Plan for Inland Surface Waters of California, Tables 1 and 2, or its Water Quality Control Plan for Enclosed Bays and Estuaries of California, Tables 1 and 2, or has deferred applicability of those tables. (Category (a), (b), and (c) waters described on page 6 of Water Quality Control Plan for Inland Surface Waters of California or page 6 of its Water Quality Control Plan for Enclosed Bays and Estuaries of California.)

All inland waters of the United States that do not include an MUN use designation and that the State has either excluded or partially excluded from coverage under its Water Quality Control Plan for Inland Surface Waters of California, Tables 1 and 2, or has deferred applicability of these tables. (Category (a), (b), and (c) waters described on page 6 of Water Quality Control Plan for Inland Surface Waters of California.)

All enclosed bays and estuaries that are waters of the United States that do not include an MUN designation and that the State has either excluded or partially excluded from coverage under its Water Quality Control Plan for Inland Surface Waters of California, Tables 1 and 2, or its Water Quality Control Plan for Enclosed Bays and Estuaries of California, Tables 1 and 2, or has deferred applicability of those tables. (Category (a), (b), and (c) waters described on page 6 of Water Quality Control Plan for Inland Surface Waters of California or page 6 of its Water Quality Control Plan for Enclosed Bays and Estuaries of California.)

*The fresh water selenium criteria are included for the San Francisco Bay estuary because high levels of bioaccumulation of selenium in the estuary indicate that the salt water criteria are underprotective for San Francisco Bay.

(iii) The human health criteria shall be applied at the State-adopted 10^{-6} risk level.

(11) Nevada, EPA Region 9. (i) All waters assigned the use classifications in Chapter 445 of the Nevada Administrative Code (NAC), Nevada Water Pollution Control Regulations, which are referred to in paragraph (d)(11)(ii) of this section, are subject to the criteria in paragraph (d)(11)(ii) of this section, without exception. These criteria amend the existing State standards

Applicable criteria

These waters are assigned the criteria for pollutants for which the State does not apply Table 1 or 2 standards. These criteria are:

Column B1—all pollutants Column B2—all pollutants Column D1—all pollutants except #2

These waters are assigned the criteria for pollutants for which the State does not apply Table 1 or 2 standards. These criteria are:

Column B1—all pollutants Column B2—all pollutants Column D2—all pollutants except #2

These waters are assigned the criteria for pollutants for which the State does not apply Table 1 or 2 standards. These criteria are:

Column B1—all pollutants Column B2—all pollutants Column C1—all pollutants Column C2—all pollutants Column D2—all pollutants except #2

contained in the Nevada Water Pollution Control Regulations. More particularly, these criteria amend or supplement the table of numeric standards in NAC 445.1339 for the toxic pollutants identified in paragraph (d)(11)(ii) of this section.

(ii) The following criteria from matrix in paragraph (b)(1) of this section apply to the waters defined in paragraph (d)(11)(i) of this section and identified below:

Water and use classification

Waters that the State has included in NAC 445.1339 where Municipal or domestic supply is a designated use

These waters are assigned the criteria in:

Column B1—pollutant #118

Column B2—pollutant #118

Waters that the State has included in NAC 445.1339 where Municipal or domestic supply is not a designated use

(iii) The human health criteria shall be applied at the 10^{-5} risk level, consistent with State policy. To determine appropriate value for carcinogens, see footnote c in the criteria matrix in paragraph (b)(1) of this section.

(12) Alaska, EPA Region 10.

(i) All waters assigned to the following use classifications in the Alaska Administrative Code (AAC), Chapter 18 (i.e., identified in 18 AAC 70.020) are subject to the criteria in paragraph (d)(12)(ii) of this section, without exception:

70.020.(1) (A) Fresh Water 70.020.(1) (A) Water Supply

(i) Drinking, culinary, and food processing,(iii) Aquaculture;

70.020.(1) (B) Water Recreation

(i) Contact recreation,

(ii) Secondary recreation;

70.020.(1) (C) Growth and propagation of fish, shellfish, other aquatic life, and wildlife

70.020.(2) (A) Marine Water

70.020.(2) (A) Water Supply

(i) Aquaculture,

70.020.(2) (B) Water Recreation

(i) contact recreation,

(ii) secondary recreation;

70.020.(2) (C) Growth and propagation of fish, shellfish, other aquatic life, and wildlife;70.020.(2) (D) Harvesting for consumption of raw mollusks or other raw aquatic life.

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classifications identified in paragraph (d)(12)(i) of this section:

Use classification

Applicable criteria

(1)(A) i

Column B1—#9, 10, 13, 53, and 126 Column B2—#10 Column D1

Applicable criteria

These waters are assigned the criteria in:
 Column B1—pollutant #118
 Column D1—pollutant #15, 16, 18, 19, 20, 21, 23, 26, 27, 29, 30, 34, 37, 38, 42, 43, 55, 58–62, 64, 66, 73, 74, 78, 82, 85, 87–89, 91, 92, 96, 98, 100, 103, 104, 105, 114, 116, 117, 118

These waters are assigned the criteria in:
 Column B1—pollutant #118
 Column B2—pollutant #118
 Column D2—all pollutants except #2.

Use classification Applicable criteria

#'s 16, 18-21, 23, 26, 27, 29, 30, 32, 37, 38, 42-44, 53, 55, 59-62, 64, 66, 68, 73, 74, 78, 82, 85, 88, 89, 91-93, 96, 98, 102-105, 107-111, 117-126 (1) (A) iii Column B1—#9, 10, 13,

iii Column B1—#9, 10, 13, 53, and 126 Column B2—#10 Column D2

#'s 14, 16, 18-21, 22, 23, 26, 27, 29, 30, 32, 37, 38, 42-44, 46, 53, 54, 55, 59-62, 64, 66, 68, 73, 74, 78, 82, 85, 88-93, 95, 96, 98, 102-105, 107-111, 115-

(1)(B)i, (1)(B) ii, Column B1—#9, 10, 13, (1)(C) 53, and 126

126

Column D2 #'s 14, 16, 18–21, 22, 23, 26, 27, 29, 30, 32, 37, 38, 42–44, 46, 53, 54, 55, 59– 62, 64, 66, 68, 73, 74, 78,

Column B2-#10

82, 85, 88–93, 95, 96, 98, 102–105, 107–111, 115–126

(2)(A) i, (2)(B)i, and Column C1—#9, 10, 13, (2)(B)ii, (2)(C), and 53

Column C2—#10 Column D2 #'s 14, 16, 18–21, 22, 23, 26, 27, 29, 30, 32, 37, 38, 42–44, 46, 53, 54, 55, 59– 62, 64, 66, 68, 73, 74, 78, 82, 85, 88–93, 95, 96, 98,

82, 85, 88–93, 95, 96, 98, 102–105, 107–111, 115–126

(iii) The human health criteria shall be applied at the State-proposed risk level of 10^{-5} . To determine appropriate value for carcinogens, see footnote c in the criteria matrix in paragraph (b)(1) of this section.

(13) [Reserved]

(2)(D)

(14) Washington, EPA Region 10.

(i) All waters assigned to the following use classifications in the Washington Administrative Code (WAC), Chapter 173–201 (i.e., identified in WAC 173–201–045) are subject to the criteria in paragraph (d)(14)(ii) of this section, without exception:

173-201-045
Fish and Shellfish
Fish
Water Supply (domestic)
Recreation

(ii) The following criteria from the matrix in paragraph (b)(1) of this section apply to the use classifications identified in paragraph (d)(14)(i) of this section:

Use classification Applicable criteria Fish and Shellfish; These classifications Fish are assigned the criteria in: Column C2-6, 14 Column D2—all Water Supply (do-These classifications are assigned the crimestic) teria in: Column D1—all Recreation This classification is assigned the criteria in: Column D2-Marine waters and freshwaters not protected for domestic water sup-

(iii) The human health criteria shall be applied at the State proposed risk level of 10^{-6} .

ply

[57 FR 60910, Dec. 22, 1992; 58 FR 31177, June 1, 1993, as amended at 58 FR 34499, June 25, 1993; 58 FR 36142, July 6, 1993; 60 FR 22229, 22235, May 4, 1995; 60 FR 44120, Aug. 24, 1995; 61 FR 60617, Nov. 29, 1996; 62 FR 52927, Oct. 9, 1997; 62 FR 53214, Oct. 10, 1997; 63 FR 10144, Mar. 2, 1998; 64 FR 61193, Nov. 9, 1999; 65 FR 19661, Apr. 12, 2000]

§131.37 California.

(a) Additional criteria. The following criteria are applicable to waters specified in the Water Quality Control Plan for Salinity for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary, adopted by the California State Water Resources Control Board in State Board Resolution No. 91–34 on May 1, 1991:

(1) Estuarine habitat criteria. (i) General rule. (A) Salinity (measured at the surface) shall not exceed specific micromhos/centimeter ductance at 25 °C (measured as a 14-day moving average) at the Confluence of the Sacramento and San Joaquin Rivers throughout the period each year from February 1 through June 30, and shall not exceed 2640 micromhos/centimeter specific conductance at 25 °C (measured as a 14-day moving average) at the specific locations noted in Table 1 near Roe Island and Chipps Island for the number of days each month in the February 1 to June 30 period computed by reference to the following formula:

Number of days required in Month X =Total number of days in Month $X * (1 - 1/(1+e^{K}))$

where

K = A + (B*natural logarithm of the previous month's 8-River Index):

A and B are determined by reference to Table 1 for the Roe Island and Chipps Island locations:

x is the calendar month in the February 1 to June 30 period;

and e is the base of the natural (or Napierian) logarithm.

Where the number of days computed in this equation in paragraph (a)(1)(i)(A) of this section shall be rounded to the nearest whole number of days. When the previous month's 8-River Index is less than 500,000 acre-feet, the number of days required for the current month shall be zero.

TABLE 1. CONSTANTS APPLICABLE TO EACH OF THE MONTHLY EQUATIONS TO DETERMINE MONTHLY REQUIREMENTS DESCRIBED.

Month X	Chipps Island		Roe Island (if triggered)	
	А	В	А	В
Feb	_1	_1	- 14.36	+2.068
Mar	- 105.16	+15.943	-20.79	+2.741
Apr	-47.17	+6.441	-28.73	+3.783
May	-94.93	+13.662	-54.22	+6.571